A. Barriers to HTA

Although the general trend in health care is toward an increased role of HTA, improved HTA processes, greater transparency of HTA, and greater involvement of stakeholders in HTA, various countervailing forces to HTA remain. Some stakeholders may oppose HTA due to their inherent interests, some of which may conflict with evidence-based processes. Innovators seek to maintain incentives to develop new technologies and lower hurdles to market access. Investors in health care products and services seek high, short-term returns on their investments. Health technology companies seek to maximize profit through increased sales of their products at high prices. Physicians and other clinicians seek to maintain their decision-making autonomy regarding ordering tests, performing procedures, prescribing therapies, and making referrals to other clinicians. Managers of hospitals and other health care facilities seek to improve their competitive status in their markets. Patient interest groups seek to retain unlimited choice of treatment options (Fineberg 2009). Among the barriers to HTA are the following:

Technological imperative. Particularly in the US and other wealthy countries, there is a “technological imperative” comprising an abiding fascination with technology, the expectation that new is better, and the inclination to use a technology that has potential for some benefit, however marginal or even poorly substantiated (Deyo 2002). Some argue that the increased potential of technology only raises the imperative to conduct HTA (Hoffman 2002).

Limited resources for HTA. As is so for other efforts, resources for HTA are limited. Although some HTA programs and certain HTA findings are nationally or internationally recognized, the resources allocated for HTA, even in the wealthy nations, are vanishingly small compared to national health care spending.

Insufficient primary data. Lack of primary studies and other data sources limits the evidence base for HTA. This also includes lack of local or regional data to conduct HTA pertaining to a particular nation, region, or health care facility and lack of data pertaining to particular population subgroups for which a technology may be applicable.

Timing misalignment. The timing of HTA may be misaligned with decision-making needs and other events. This may arise in delays in requesting or allocating funding for an HTA, ongoing adoption and use of technologies while HTA is being conducted, delays between release of HTA findings and their adoption in policy and practice, and the “moving target problem,” in which the relevance of HTA findings is diminished by changes in technologies, their comparators, or how they are used.

Prestigious proponents of technology. The opinions of highly regarded or powerful proponents or “champions” of adopting a technology may prevail, even in the absence of credible supporting evidence.

Marketing. Increasingly effective and targeted marketing and promotion of health technologies, including short courses sponsored by health care product companies to train physicians in using these products and direct-to-consumer advertising (where this is permitted) can weigh against HTA findings.

Financial incentives. Health care systems that reimburse hospitals, physicians, and other providers every time a technology is provided, i.e., “fee-for-service” health care, tend to increase the volume of technology use, even when supporting evidence is lacking. Hospitals and physician groups that have invested in major capital equipment and supporting infrastructure such as for diagnostic radiology, radiation oncology, and robotic surgery, have incentives to use these technologies (Garrison 2011; Jacobs 2013). Also, patients with little or no exposure to costs tend to seek more health care. These financial incentives can contribute to the inertia of existing payment systems that reward use of technologies despite lack of supporting evidence and related policies and clinical practice guidelines.

Political actions. HTA may be circumvented by political actions, often prompted by “lobbying” or “pressure groups.” This occurs, for example, when laws are passed to mandate (or eliminate) coverage by government or private sector payers for certain technologies, in contrast to findings based on available evidence, or in the absence of rigorous evidence.

Implementation barriers. There are various barriers to implementing some HTA findings and recommendations by decision makers and policymakers for whom HTA reports are intended. Among these are: lack of access to HTA reports, complex and technical formats of HTA reports, questionable data quality, absence of real-world applications, and narrow focus (Henshall 2002). HTA findings and recommendations may be difficult to implement given clinicians’ and other providers’ reluctance to change long-standing practice routines, inertia of existing payment policies, and rapidly outdated education and training in some instances. Insufficient opportunity or encouragement for scientific inquiry and skepticism in clinical education contributes to this inertia. Implementation of HTA findings also may be limited due to practical external constraints, such as when adopting a new technology requires a particular environment (e.g., special shielded rooms, instrumentation, and related facilities for diagnostic and therapeutic procedures using ionizing radiation), professional training, or other resources that are unavailable in a particular facility.

As noted above, political forces can circumvent evidence-based processes (Fletcher 1997). One of the main applications of HTA is informing coverage policies. While many payers use HTA findings to inform coverage policies, they are also subject to laws in their respective countries, states, provinces, and other jurisdictions. Legislative bodies at these levels can mandate that health programs provide certain services. In the US, historical examples of technologies that have been mandated by Congress for the Medicare program or by state legislatures for public or private payers have included autologous bone marrow transplant with high-dose chemotherapy (ABMT-HDC) for advanced breast cancer, bone densitometry screening for osteoporosis, screening mammography, prostate cancer screening, and treatment for temporomandibular joint disorder. Such mandates, including the ones noted here, were not based on the types of evidence-based methods preferred in HTA, including some instances where the evidence was sufficient for some populations with a given disease or risk factors but not for others. These mandates were influenced by pressure groups representing certain patients, physicians, health product makers, and others (Deyo 1997; Sheingold 1998).

In some instances, legislative mandates arise through frustration with slowed or delayed HTA processes. A notable instance was the mandate by the US Congress for Medicare coverage of dual energy x-ray absorption (DEXA) for bone mineral density measurement, which had been subject to an assessment involving two federal agencies over a seven-year period (Lewin Group 2000). Mandating coverage of a technology, rather than subjecting it to HTA, can mask more complex clinical consequences. As noted above, in the 1990s, many health plans in the US reluctantly agreed to cover ABMT-HDC in response to state legislative mandates brought about by intensive political pressure, and the threat of litigation (legal action in courts). It was not until 1999, after tens of thousands of women were subjected to the procedure, that results of five well-conducted RCTs, along with revelations of falsified data by a researcher who reported early findings in support of the procedure, demonstrated that the procedure provided no benefit compared to standard-dose treatment for breast cancer, and caused unnecessary suffering in some women (Berger 1999; ECRI 1995; Mello 2001; Sharf 2001).

results matching ""

    No results matching ""